Worksheet 5 solutions

1.

a. taylor expand f about $p_{n}: f(x)=f\left(p_{n}\right)+\left(x-p_{n}\right) f^{\prime}\left(p_{n}\right)+\frac{\left(x-p_{n}\right)^{2}}{2} f^{\prime \prime}(\xi)$
b. plug in $x=p: f(p)=f\left(p_{n}\right)+\left(p-p_{n}\right) f^{\prime}\left(p_{n}\right)+\frac{\left(p-p_{n}\right)^{2} f^{\prime \prime}(\xi)}{2}$
c. divide by $f^{\prime}\left(p_{n}\right): \frac{f(p)}{f^{\prime}\left(p_{n}\right)}=\frac{f\left(p_{n}\right)}{f^{\prime}\left(p_{n}\right)}+\left(p-p_{n}\right)+\left(p-p_{n}\right)^{2} \frac{f^{\prime \prime}(\xi)}{2 f^{\prime}\left(p_{n}\right)}$
d. note $f(p)=0$ and $p_{n+1}=p_{n}-\frac{f\left(p_{n}\right)}{2 f^{\prime}\left(p_{n}\right)}$
e. so we get $0=p-p_{n+1}+\left(p-p_{n}\right)^{2} \frac{f^{\prime \prime}(\xi)}{2 f^{\prime}\left(p_{n}\right)}$
f. rearrange, take absolute value, and we are done.
2.
a. let $x=p_{1}^{(0)}$, then by defintition, we have:
b. $.75=1-\frac{(x-1)^{2}}{3-2 x+1}$
c. solve for x, get $x=0$ and $x=1.5$
3.

4. d
a. $f(x)$ already is the unique polynomial going through these points
5. d

	-1	0	1
f_{0}	0	-1	0
f_{1}	-1	0	5
f_{2}	-3	0	1

a. then $g=f_{0}+f_{1}+f_{2}$

